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Abstract

In this paper we extend the two-dimensional methods set forth in [T. Cecil, D. Marthaler, A variational approach to

search and path planning using level set methods, UCLA CAM Report, 04-61, 2004], proposing a variational approach

to a path planning problem in three dimensions using a level set framework. After defining an energy integral over the

path, we use gradient flow on the defined energy and evolve the entire path until a locally optimal steady state is

reached. We follow the framework for motion of curves in three dimensions set forth in [P. Burchard, L.-T. Cheng,

B. Merriman, S. Osher, Motion of curves in three spatial dimensions using a level set approach, J. Comput. Phys.

170(2) (2001) 720–741], modified appropriately to take into account that we allow for paths with positive, varying

widths. Applications of this method extend to robotic motion and visibility problems, for example. Numerical methods

and algorithms are given, and examples are presented.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

This paper extends results seen in [4] to path planning in three dimensions. Path planning in an obstacle-

ridden environment while simultaneously attempting to search is an inherently difficult, and well-studied

problem. In particular, in the field of unmanned aerial vehicle path planning, many different solution tech-

niques have been studied. Potential field path planning methods have appeared frequently in the literature

[22], but are plagued with inherent limitations [17]. Probabilistic road mapping [15] is a technique which
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uses a heuristic method to generate a road map through the space, then searches to find the lowest cost

path. The heuristic nature of the path generation leads to a difficulty in characterizing the algorithms in

terms of performance, robustness, complexity and reliability [14]. An optimization-based technique using

a mixed integer linear programming (MILP) method has recently been shown to perform quite well in

specific instances [10,27]. This method combines linear programming with the ability of constraining some
subset of the state variables to be integers.

In general, path planning methods tend to fall in a spectrum with complex direct optimization

approaches on one side and more pragmatic heuristic approaches on the other. Most approaches fall some-

where in between the two extremes and make use of both heuristic- and optimization-based components.

Combining these components can lead to some guarantees on performance and robustness with reduced

complexity and computation time. Also, and perhaps most relevant, is the fact that rarely, if ever is the

globally optimal path ever required. In practice, most applications require a process that produces a

reasonable result with the cost of the solution increasing with longer solve time.
The general problem of finding the optimal path through a domain under some given constraints has

many applications. Given that the domain is not homogeneous, i.e., there is an associated cost function

to the path in the domain, the general solution begins to increase rapidly in complexity.

A specific instance of the general problem is that of finding an optimal-path map for a known environ-

ment. The optimal-path map for a known three-dimensional terrain is a function x(x,y,z) whose values

describe how to best reach a goal point from the location (x,y,z). Optimality in this case could be shortest

path, least visibility from above, largest patrol area, etc. Previous work on true optimal-path maps for

autonomous robotics have almost always investigated restricted cases.
Another field of relevance is that of robotic motion. In [16] path planning for robots was studied

using level sets where there were objects to be avoided in the domain. The method of solution was

to construct a weighted distance function over the entire domain and then, from a final position, back

propagate the solution perpendicular to the level sets of the distance function, resulting in an optimally

shortest path. Path planning algorithms for mobile robots are also described in [3,18,19]. Also, in the

context of manipulators there has been path planning research done within a variational framework

[29].

In [32] the framework for studying visibility and its dynamics using level sets was established. In [6] var-
ious variational problems were approached using the framework established in [32]. In [6] a parameterized

path planning algorithm was introduced that treats the path as a finite union of multiple observers which

are evolved so as to maximize the accumulated visibility along the path. See also [34] for a path planning

algorithm based on visibility.

In this paper, we investigate the general problem of finding a ‘‘search path’’ through a domain where we

know some information about where targets and obstacles may be located. An agent searching such a do-

main would want to have a path that satisfies being shortest with having a high confidence of finding targets

while avoiding obstacles. The searcher can only ‘‘see’’ a finite distance about it at any given point, and this
distance may vary spatially according to local weather conditions, altitude, etc. Therefore, we wish to gen-

erate an optimal path that gives a certain level of confidence of locating targets, while simultaneously avoid-

ing obstacles, which will be determined via the information we know about the domain.

Computationally we represent the path, C, as in intersection of the sets {x|/(x) = 0} \ {x|w(x) = 0} of

two level set functions /;w : R3 ! R. This framework was originally established in [2,7]. However, the

extension of their method to our case requires that we evolve a tube (not just a codimension-2 curve), whose

axis is C, and whose boundary represents the edge of the ‘‘visible’’ region of the observer located on C. By
evolving this tube of radius r we are actually evolving a codimension-1 set along with the codimension-2 set
C, with their relationship defined by a distance function.

The level set method was originally developed for the evolution of codimension-1 sets in [23]. It was only

recently that numerical schemes for codimension-2 sets were studied in [2,7]. Now, we present a way of
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tracking a tube whose axis is a codimension-2 curve, but has a prescribed fixed or spatially varying radius.

Capturing the interplay between the axis C and the edge of the tube is the important step, and in doing so

we introduce a procedure which we call pseudo-reinitialization [4]. This procedure allows C to develop

kinks and other highly curved regions that would not occur if typical reinitialization was used. In our exten-

sion of the codimension-2 model we also implement fast sweeping techniques to reinitialize /,w and keep
them orthogonal, as these steps are crucial for keeping the tube at a specific radius and must be done often

and quickly. Topology preservation for codimension-2 curves is also introduced, which has importance in

applications.

The remainder of the paper is organized as follows, in the next section, we formulate the search path

problem in a general framework, with general metrics describing the optimization, and constraints stem-

ming from the search path problem. Following that, we introduce the level set method, and then our algo-

rithm. We present simulations of canonical examples demonstrating the method and conclude with some

remarks about the generality of the method.
2. Problem formulation

The general path planning problem has had many formulations. For a given set X 2 R3, we seek a path

C : ½0; 1� ! R3, with the following properties:

1. Optimize some function of C (arclength, curvature, etc.).
2. Given an a priori distribution, P, on X, maximize
Z

SC

PðxÞ dx;
where SC = {x 2 X:|x � C| 6 c(x)}, where c(x) is the radius of the set ‘‘cut-out’’ of the domain by the

path C.

We note that our work on this problem was motivated by the task of computing optimal search strat-
egies in the presence of a priori knowledge [20]. The function P represents any knowledge of the search do-

main, X. Possible choices for the optimization would include minimal arclength and minimal curvature.

Also, we note that this encompasses obstacle avoidance when the integral in 2 is minimized or the sign

of P is changed.
2.1. Level set formulation

The search path C will be represented by the intersection of the 0 level sets of two functions
/;w : X ! R. This follows the framework established in [2,7]. Given initial functions /(t = 0), w(t = 0),

and an energy E(/,w) to be minimized/maximized, we use the method of gradient descent/ascent to arrive

at a set of coupled PDEs of the form
o/
ot

¼ � oE
o/

;
ow
ot

¼ � oE
ow

; ð1Þ
where oE
o/;

oE
ow are taken from the Euler–Lagrange equations. These PDEs are then evolved to steady state

resulting in /,w obtaining local minima. Most of our variational problems will be non-convex, so the initial

choices of /,w will determine the local minima in which we finish. The numerical methods for solving (1)

will be discussed later.
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2.2. Examples of energies and PDEs

The energy representingZ
Fig. 1.

the ref
SC

P ðxÞ dx ð2Þ
will always be included in our variational formulation. First, we assume /,w are weighted signed distance

functions, and that they are perpendicular, i.e., $/ Æ $w = 0. Given this assumption, we can see that
vðSCÞ ¼ Hðr � kð/;wÞkÞ; ð3Þ

where v is the characteristic function, and H is the Heaviside function, and in practice we use

k/;wk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q
. Here, the width of the tube r is a constant. We note that this results in a cylindrical

path whose cross-sections are circles of radius r, whose center axis is C. See Fig. 1 for a sample tube con-

struction. If other norms were used instead of l2 then we would have tubes whose cross-sections would be

other objects, such as squares when using the l1 norm.

Our integral (2) can then be written as
Z
SC

P ðxÞ dx ¼
Z
X
H r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q� �
P ðxÞ dx; ð4Þ
where we have integrated over the entire domain X. To maximize this integral we perform gradient ascent

and arrive at the PDEs
/t ¼PðxÞd r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q� �
�/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q ; ð5aÞ

wt ¼PðxÞd r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q� �
�wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q ; ð5bÞ
where d(y) = H 0(y) denotes the Dirac delta function. Intuitively, solving (5) attempts to move the set

fxj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q
g ¼ r away from the 0 level set where P > 0, so that

R
SC
P becomes larger as time progresses.
The graphs of {/ = 0} (red xz plane), {w = 0} (green sinusoidal plane), and {i(/,w)i2 = 0.2} (blue tube). (For interpretation of

erences to color in this figure legend, the reader is referred to the web version of this article.)
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Note that we have made the assumptions that /,w are weighted signed distance functions, and that $/
Æ $w = 0. It is necessary for these assumptions to hold for (4) to be valid. Therefore, we need to enforce

these conditions during the PDE evolutions. The way we do this is by periodically solving a set of PDEs

whose steady state solutions satisfy the necessary criteria.

When we say that / is a signed distance function, we mean that / satisfies
jr/j ¼ 1

RðxÞ ; ð6Þ
where R(x) > 0, with boundary condition given by {/(x) = 0|x 2 C}, and that sign(/) is specified in X. One

way of solving this is to solve the PDE
/t þ Sð/Þ jPrwr/j � 1

RðxÞ

� �
¼ 0; ð7Þ
to steady state, where S(x) is a regularized signum function, /(x,t = 0) = /0 in X, and /(x 2 C) = 0. The

solution, /1, is a signed distance function with distance measured on the sets fw ¼ cg 8c 2 R. Similarly,
to enforce that the level sets of / are perpendicular to the 0 level set of w we can solve the following

PDE to steady state
/t þ SðwÞ rw
jrwj � r/ ¼ 0; ð8Þ
with /(x,t = 0) = /0 in X, and /(tP 0)|w = 0 = /(t = 0)|w=0, thus yielding
rw
jrwj � r/ ¼ 0; ð9Þ
We will discuss numerical solvers for these problems later.

Another common energy term to be minimized is the length of C. We can write
jCj ¼
Z
X
dð/ÞdðwÞjPrwr/jjrwj dx; ð10Þ
where
Pv ¼ I � v� v

jvj2
ð11Þ
is the orthogonal projection matrix projecting onto the plane with normal v. In standard codimension-1

level set methods the mean curvature motion
ut ¼ jrujj ð12Þ
can be derived by minimizing an integral analogous to (10) by gradient descent, resulting in
ut ¼ dðuÞj; ð13Þ

and then replacing the d function by |$u| (here j is the signed mean curvature of the codimension-1 surface).

In our framework it was shown in [2] that when minimizing (10) one ends up with a diagonal matrix of d
functions that can be replaced by a matrix serving the analogous role of |$u| in the codimension-1 case,

which will result in the PDEs
/t þ kN � r/ ¼ 0; ð14aÞ
wt þ kN � rw ¼ 0; ð14bÞ
where kN is curvature times the normal vector of C, i.e., after applying gradient descent we arrive at
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/t

wt

� �
¼

dð/ÞdðwÞ 0

0 dð/ÞdðwÞ

� � �r � Prwr/
jPrwr/j jrwj

� �
�r � Pr/rw

jPr/rwj jr/j
� �

0
B@

1
CA.
Then the matrix of d functions is replaced by
jr/j
jPr/rwj

r/�rw
jPrwr/jjrwj

r/�rw
jPr/rwjjr/j

jrwj
jPrwr/j

0
@

1
A;
which is a symmetric positive definite matrix, indicating that we are still following a gradient descent direc-

tion minimizing (10).
We note that the vector kN can be found by taking the tangent vector
T ¼ rw�r/
jrw�r/j
and deriving
kN ¼ dT
ds

¼ rT � T ¼
rT 1 � T
rT 2 � T
rT 3 � T

0
B@

1
CA; ð15Þ
where Ti is the ith component of T and s is an parameterization of C, see [1,2] for more details.

For certain problems one may want to control the magnitude of k along the path. Energies to be min-

imized in this case could be of the form
Z
X
dð/ÞgðkÞ dx; ð16Þ
where g is a non-negative function of k such as |k|p, p > 0. The PDEs resulting from (16) are fourth order

involving second partial derivatives of k.

In general we will evolve (5) with its right-hand side augmented by adding weighted terms that are found

from the additional energy minimizations/maximizations that each particular problem demands.
3. Numerical methods

The PDEs found in Section 2.2 are generally Hamilton–Jacobi equations. To discretize them we con-

struct a uniform rectangular grid on X. Viscosity solutions for these types of equations have been studied

well [9,12], and numerical methods that converge to the viscosity solution have been implemented [8,25,28].

We use these methods to solve our equations. In general they consist of upwind type spatial discretizations

and explicit Runge–Kutta time discretizations, and also fast sweeping solutions to find steady state solu-

tions. We note that the notation below will refer to / as the unknown function where w is fixed, but all
algorithms and PDEs are also applied to w with / fixed.
3.1. Advancement of time dependent PDEs resulting from gradient flows

The level set problem formulations found in [2,7] involve only one level set of interest, the set C0 =

{/(x) = 0} \ {w(x) = 0}. Thus the PDEs to be evolved only involve d functions that have support localized

near C0. However, for our problem, (5) includes a d functions whose support lies near the set SC =
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{x|i(/,w)i2 = r}, when we use a numerical approximation to d. When (5) is combined with a Lagrange mul-

tiplier term derived fromminimizing k|C0|, then we have a PDE systemwith d functions localized nearC0 also.

The goal is simultaneously evolve all the PDEs derived from gradient flow on the energy integrals, as

well as from the distance function and perpendicularity requirements. We have chosen to use a splitting

technique similar to that in [4]. The general idea introduced for a 2d domain there was to evolve / near
the �r, 0, r level sets separately, while enforcing (or pseudo-enforcing) the distance function requirement

in between advancements. In 3d we have not only the added burden of enforcing perpendicularity, but also

an infinite number of codimension-2 curves, C(a,b) ” {/(x) = a} \ {w(x) = b}, where i(a,b)i2 = r, of which

the tube SC is composed. Our approach numerically will be to approximate these infinite number of curves

by a finite number. Also, the perpendicularity requirement will be met by also solving (9), along with (6), in

between advancements near the curves C0 or C(a,b). See Fig. 2.

Thus if we are using the l2 norm to determine SC, then we discretize a circular cross-section of SC (found

by taking T(y) Æ (x�y) for a point y 2 C0) into M points by
Fig. 2

i(c1,c2)
fðai; biÞgMi¼1 ¼ fcosðh0 þ 2pi=MÞ; sinðh0 þ 2pi=MÞgMi¼1; ð17Þ

where h0 can be chosen arbitrarily. Then we split the evolution of Cr into M separate evolutions near the

curves {/ = ai} \ {w = bi}. After / has been advanced for one timestep using an explicit Runge–Kutta

method near Cðai ;biÞ, we perform pseudo-reinitialization (as was done in the 2d case). This pseudo-reinitial-

ization propagates the information from Cðai;biÞ to the rest of X. We repeat the advancement and pseudo-

reinitialization for w near Cðai ;biÞ as well before advancing near another Cðaj;bjÞ for j 6¼ i. In practice we try to
choose the (aj,bj) so that (ai,bi) Æ (aj,bj) is minimized.

In order to avoid the discretization of the d function we modify the PDE (5a), for example, by replacing

the d(r � i(/,w)i) with |$/|Cr(r�i(/,w)i), where Cr(x) is a cutoff function, as described in [26] with support

over points where |x| < r. This allows all level sets of / to move with the same speed, and still maintains the

local nature (near Cðai;biÞ) of the evolution. The term |$/| is discretized using a Godunov numerical

Hamiltonian.

Near C0 we use the same technique except that we note that in (14) the d functions have already been

substituted out, and instead of using pseudo-reinitialization after each step, we use true reinitialization.
To discretize kN we use the formulation (15) with central finite differences used to approximate all

derivatives.

3.2. Fast sweeping reinitialization

Because of the frequency with which we solve (7) and (9) to steady state, it is imperative that we have a

fast solution method. Fortunately, there has been progress made in this area recently. Solution methods
φ=0, ψ=0

φ=α1, ψ=α2
φ=β1, ψ=β2

φ=γ1, ψ=γ2

. Tube SC around C0 (dotted line), with three curves, Cða1 ;a2Þ;Cðb1 ;b2Þ;Cðc1 ;c2Þ, that lie on SC, i.e., i(a1,a2)i2 = i(b1,b2)i2 =
i2 = r.
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known as fast sweeping [36,28,33], and fast marching [30] take advantage of the hyperbolic nature of the

problems to sweep or march along characteristics to derive the steady state solution with a minimal number

of operations per gridpoint. For reinitialization on manifolds, however, the straightforward extension of

these fast methods to the projected eikonal equation
jPrwr/j ¼ 1

RðxÞ ð18Þ
does not work, as (18) does not satisfy the requirements for the currently designed sweeping and marching

methods. This was noted in [21] where a fast method was proposed for solving (18) by instead solving (6) in

a small band around the set {w = 0}. As the width of this band goes to 0, the solution converges to that of

(18).

The method we use is to use the banded domain method of [21] to define the locations where / will be
evolved, and then employ the fast sweeping technique to solve (6). Some modifications are done to the

methods to fit in our framework. Firstly, to avoid the overhead of initializing the band (and to keep the

framework of the fast sweeping algorithm fixed), we instead solve the problem
jr/j ¼ 1

RðxÞðChðwðxÞÞ þ �Þ ; ð19Þ
where again Ch is a piecewise constant cutoff function, taking only values {0,1}, with support width h, and
0 < � � dx.

Also, to obtain a signed distance function as our solution we store the sign of / at each point prior to

starting the evolution, and then let / = |/| before starting the sweeping procedure (note that the sweeping

procedure then requires an initialization of every point away from a fixed band where |/| 6 d = 1.5 dx to a

large positive value). After the sweeping iterations have ended we correct each / by multiplying it by its

original sign.

We note that in practice, because of the frequent perpendicularizations and reinitializations, the local

coordinate system of /,w inside of each cross-section of Cr resembles that of two perpendicular axes, thus
the projected Hamiltonian
jPrwr/j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr/j2 � jr/ � rwj2

q
	 jr/j; ð20Þ
as $/ Æ $w 	 0. Thus reasonable solutions can be obtained with large band widths, h.

The exact formulas used in the Gauss–Seidel sweeping step for 2d are listed in [36], and a procedure for

deriving them is higher dimensions is given in [37]. For completeness we list them for 3d here.

Given a uniform grid with spacing dx, with function values indexed by ui,j,k, we discretize (19) (with the

right-hand side forcing term replaced by fi,j,k)
½ðuni;j;k � unxminÞ
þ�2 þ ½ðuni;j;k � unyminÞ

þ�2 þ ½ðuni;j;k � unzminÞ
þ�2 ¼ f 2

i;j;k dx
2; ð21Þ
where
unxmin ¼ minðuni�1;j;k; u
n
iþ1;j;kÞ;

unymin ¼ minðuni;j�1;k; u
n
i;jþ1;kÞ;

unzmin ¼ minðuni;j;k�1; u
n
i;j;kþ1Þ;
and (x)+ = max(x,0). At oX we use one sided differences consisting only of points lying within X.
Assuming we have ordered the ai from smallest to largest by a1 6 a2 6 a3, then the solution to
½ðu� a1Þþ�2 þ ½ðu� a2Þþ�2 þ ½ðx� a3Þþ�2 ¼ f 2 dx2;
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which is the same as (21), is given by the following formulas:
u ¼

l1 � a1 þ f dx if l1 6 a2;

l2 � a1þa2þ½2ðf dxÞ2�ða2�a1Þ2�1=2
2

else if l2 6 a3;

l3 �
P3

i¼1
ai

� �
þ 3ðf dxÞ2�2

P3

i¼1
a2i

� �
�a1a2�a1a3�a2a3

� �� 	1=2
3

otherwise:

8>>><
>>>:

ð22Þ
3.3. Pseudo-reinitialization

As noted in [4] when reinitializing after an advancement near the tube boundary, we cannot use straight-

forward eikonal equation solvers as we lose interesting portions of solutions that differ from the viscosity

solution. To remedy this problem we use the same type of pseudo-reinitialization as was introduced in [4].

The idea is that instead of using the PDE method of reinitialization to a weighted signed distance func-

tion [31] which solves the equation
/t þ Sð/Þ jr/j � 1

RðxÞ

� �
¼ 0; ð23Þ
we instead solve
/t þ Sð/Þ r/ � g
jgj � jgj

� �
¼ 0; ð24Þ
where g is a static vector field found by taking g = $/ prior to starting the pseudo-reinitialization.
To solve (24) we first choose g. This is done in a Godunov type upwind manner. For each gridpoint xi,j

we make the following choices:
g1 ¼ maxmodðmaxðD�
x /i;j;k; 0Þ;minðDþ

x /i;j;k; 0ÞÞ=dx;
g2 ¼ maxmodðmaxðD�

y /i;j;k; 0Þ;minðDþ
y /i;j;k; 0ÞÞ=dy;

g3 ¼ maxmodðmaxðD�
z /i;j;k; 0Þ;minðDþ

z /i;j;k; 0ÞÞ=dz
ð25Þ
if S(/i,j,k) P 0, and
g1 ¼ maxmodðminðD�
x /i;j;k; 0Þ;maxðDþ

x /i;j;k; 0ÞÞ=dx;
g2 ¼ maxmodðminðD�

y /i;j;k; 0Þ;maxðDþ
y /i;j;k; 0ÞÞ=dy;

g3 ¼ maxmodðminðD�
z /i;j;k; 0Þ;maxðDþ

z /i;j;k; 0ÞÞ=dz
ð26Þ
if S(/i,j,k) < 0, where
maxmodðx; yÞ ¼
x if jxj P jyj;
y otherwise:




Here
D�
x /i;j;k ¼ �ð/i�1;j;k � /i;j;kÞ;

D�
y /i;j;k ¼ �ð/i;j�1;k � /i;j;kÞ;

D�
z /i;j;k ¼ �ð/i;j;k�1 � /i;j;kÞ.
We note that more accurate W/ENO methods can also be used to construct g. At oX we enforce that there

will be no incoming characteristics by taking Vi = 0 if Vi has the sign of an incoming characteristic, e.g., at

the left boundary in x we take V1 = min(V1,0). These boundary conditions are consistent with those used in
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(21), which employ an approximation to the Neumann boundary conditions, o//on = 0, when incoming

characteristics are found.

Once g has been chosen we solve (24) using a fast sweeping method adapted to this linear PDE. The basic

form of the steady state PDE is
V � r/ ¼ f ; ð27Þ

where in this case V = S(/)g/|g|, f = S(/)|g|. In this case the Godunov Hamiltonian is found by upwinding

depending on the sign of Vi. So we discretize /x, for example, by
/x 	
ð/i;j;k � /i�1;j;kÞ=dx if V 1 P 0;

ð/iþ1;j;k � /i;j;kÞ=dx if V 1 < 0.

(
ð28Þ
Thus we can write the discretized version of (27) as
X3

i¼1

V iðai/i;j;k þ bi/offseti
Þ=dxi ¼ f ; ð29Þ
where ai, bi 2 {�1,1}, and /offseti
is found from equations analogous to (28) by taking the indices of the

point chosen in the approximation of /xi that is different from /i,j,k. If we note the dependence of ai,bi
on the sign of Vi, then we can write (29) as
X3

i¼1

jV ijð/i;j;k � /offseti
Þ=dxi ¼ f . ð30Þ
Then solving for /i,j,k we find
/i;j;k ¼
f þ

P3

i¼1jV ijð/offseti
Þ=dxiP3

i¼1jV ij=dxi
. ð31Þ
If Vi = 0 then is does not matter which offset point we choose, and in the cases where
P3

i¼1jV ij 	 0 we set

/i,j,k to the average of its neighbors with indices (a,b,c) such that kða; b; cÞ � ði; j; kÞkl1 6 1.

The sweeping directions used are the same as those used for the eikonal equation, however, we do not

initialize the grid to large positive values away from the fixed band. Rather outside the fixed band where

|/| 6 d = 1.5 dx we use the current values of / as initial values.
3.4. Perpendicularization

For perpendicularization we note that (9) can be discretized as (27) with f = 0 and V = S(w)$w/|$w|. The
solution to this PDE is found by fast sweeping using the same framework and initialization, including

Gauss–Seidel sweeps using (31) as was done in the pseudo-reinitialization case. In this case the fixed band

is taken where |w| 6 d = 1.5 dx. The vector V is found using central differencing, where we regularize the

denominator in V, and correct for incoming characteristics as well.
3.5. Topology preservation

For certain problems such as searching it makes physical sense that the search path C0 enters X from one

point a 2 oX, and leaves through another point b 2 o X and has fixed topology.

For codimension-1 level set dynamics there is a method, outlined in [13], that guarantees topology pres-

ervation. This was used in [4] to keep the path from changing topology in 2d. However, for codimension-2

curves in 3d there is no existing algorithm of this type. Therefore, in the spirit of the projected PDEs with
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which we have been working, we attempt to project the 2d method from [13] onto the surface with normal

$w/|$w|.
The idea is that when we are changing the value of /i,j,k, if the sign is being changed and we are near the

set {w = 0}, then we attempt to find a local neighborhood, N, of / values on {w = 0}, and project N to the

standard 2d nine point neighborhood where the topology preservation can be enforced. To find N we first
calculate the normal vector to w: nw = $w(xi,j,k)/|$w(xi,j,k)| using central finite differences. Then we find the

normal vector w that approximates nw such that w 2 W = {xa,b,c�xi,j,k}, where kða; b; cÞ � ði; j; kÞkl1 ¼ 1.

We do this by taking the w 2 W that maximizes nw Æ w/|w|. Once this approximate normal is found we fill

N with all points such that (xa,b,c � xi,j,k) Æ w = 0, where kða; b; cÞ � ði; j; kÞkl1 ¼ 1, i.e., we take points from

the 26 nearest neighbors to xi,j,k that lie on the plane passing through xi,j,k with normal w. The cardinality of

N is 8 unless kwkl1 ¼ dxþ dy þ dz, in which case it is 6.

Next, we project N onto a local 2d grid by finding a non-zero component of w and projecting to the plane

perpendicular to this component direction. For example, if w = (1,0,1), then we could project any node
xa,b,c 2 N onto yb,c or ya,b. Once we have this 2d neighborhood, all of whose points lie on a regular 2d grid,

we can apply the standard topology preservation method from [13]. See Fig. 3 for an example of how N is

projected onto a 2d plane when card(N) = 8.
Fig. 3. Projection of an 8 point 3d neighborhood onto a 2d plane. The bold lines represent the boundary of the neighborhood.



A1

A2

B 1

B 2

C 2

C 1

Fig. 4. Projection of a 6 point 3d neighborhood onto a 2d plane. The bold lines represent the boundary of the neighborhood. The

hexagon along with either {A1,A2}, {B1,B2}, or {C1,C2} makes up an 8 point neighborhood that can be mapped to a standard 8 point

rectangular neighborhood of the center point.
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If card(N) = 6 then we need to fill out the projected 2d neighborhood with 2 extra points, or else our
algorithm will be too severe in its judgment of whether or not topology has changed. Thus we examine

all three symmetric extensions of N that include the points, xa,b,c, that are closest to xi,j,k, are lying on

our grid, and have the property that (xa,b,c�xi,j,k) Æ w = 0. These extra points have the property that exactly

one of the indices {a,b,c} is offset from the index {i,j,k} by ±2. Fig. 4 shows an example of the hexagonal

neighborhood in 3d, along with its three possible extended symmetric 8 point projections onto a 2d plane,

each of which can be mapped in a one to one manner onto a rectangular 8 point neighborhood where the

usual topology preservation algorithm can be run. For points where card(N) = 6 we run the topology

change test on all three possible extended neighborhoods, and prohibit a sign change in / at xi,j,k if any
of the three tests indicates a topology change.

While the work done in constructing N is more significant than what was done in the 2d case, the codi-

mension-2 nature of C0 means that this procedure must be applied an order of magnitude fewer times dur-

ing the evolution. In practice we require |w| 6 2dx before the topology preservation method is applied.

We also note that if it is necessary to keep the points where C0 intersects the boundary (or any other

subset of X) fixed, we imposed Dirichlet boundary conditions / = w = 0 at these points. If these points

do not lie on the uniform grid then we can modify the grid slightly near them so that they are included

in the discretization of X. If this is done then a local method for advancing the solution on an unstructured
grid could be used near the points.

3.6. Outline of evolution procedure

In this section, we outline the evolution procedure. We give a listing of the steps taken during one iter-

ation. The evolution procedure is repeated until steady state is reached.
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In certain steps of the computational procedure we shift /,w by adding or subtracting (ai,bi) at all points

so that identical equations being solved near Cðai ;biÞ can be solved using the same coded functions for all i.

This is explained in this way to emphasize that coding can be done using a smaller number of functions that

do identical jobs on shifted versions of the data. When this is done we denote the shifted version of / as

/ + ai. It is assumed that after the step in question is completed, that / is then shifted back the opposite
way by �ai. This is done similarly with w.

The evolution loop advancing the solution from time t1 to t1 + dt is given below. We illustrate the steps

with an example PDE system of the form:
/t ¼ P ðxÞd r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q� �
�/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q � kkN � r/; ð32aÞ

wt ¼ P ðxÞd r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q� �
�wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q � kkN � rw; ð32bÞ
where we will use the substitutions
d r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q� �
! jr/jCrðr � kð/;wÞkÞ; in (32a) or

d r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q� �
! jrwjCrðr � kð/;wÞkÞ in (32b);

ð33Þ
when they are implemented numerically.

1. Advance functions near Cðai;biÞ, for i = 1, . . .,M where we choose (ai,bi) such that i(ai,bi)i = r.
(a) Find g 	 $/ based on / � ai, w � bi using (25), (26).

(b) Evolve / from time t1 to t1 + dt the points near where / = ai, w = bi, i.e., evolve all /t PDE terms with

dðr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q
Þ in them, e.g.,
/t ¼ P ðxÞd r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q� �
�/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q .
(c) Pseudo-reinitialize / using a banded fast sweeping method within a fixed band around {w � bi = 0},

using {/ � ai 	 0} as the points where / is fixed during the sweeping process.

(d) Find g 	 $w based on / � ai, w � bi using Eqs. (25) and (26) with w substituted in place of /.
(e) Evolve w from time t1 to t1 + dt the points near where / = ai,w = bi, i.e., evolve all wt PDE terms with

dðr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q
Þ in them, e.g.,
wt ¼ P ðxÞd r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q� �
�wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q .
(f) Pseudo-reinitialize w using a banded fast sweeping method within a fixed band around with

{/ � ai = 0}, using {w � bi 	 0} as the points where w is fixed during the sweeping process.
2. Advance functions near C0.

(a) Evolve / from time t1 to t1 + dt the points near where / = w = 0, i.e., evolve all /t PDE terms with

dð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q
Þ in them, e.g.,
/t ¼ �kkN � r/.
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(b) Reinitialize / using a banded fast sweeping method within a fixed band around with {w = 0}, using

{/ 	 0} as the points where / is fixed during the sweeping process.

(c) Perpendicularize / with fast sweeping, using {w 	 0} as the points where / is fixed during the sweep-

ing process.

(d) Evolve w from time t1 to t1 + dt the points near where / = w = 0, i.e., evolve all wt PDE terms with

dð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 þ w2

q
Þ in them, e.g.,
wt ¼ �kkN � rw.
(e) Reinitialize w using a banded fast sweeping method within a fixed band around with {/ = 0}, using

{w 	 0} as the points where w is fixed during the sweeping process.

(d) Perpendicularize w with fast sweeping, using {/ 	 0} as the points where w is fixed during the sweep-
ing process.

The total cost for one complete time step advancement depends on the ratio of the radius of the tube, r, to

the grid spacing dx, alongwithM. Assuming that in each direction of the grid we haveN points, and given that

C is a codimension-2 curve, we have that the number of grid points, Ngrid, needed to be advanced in time is
N grid ¼ length 
 ðcross sectionÞ ¼ OðNÞ 
Oðpr2=dx2Þ ¼ OðNr2=dx2Þ.

At each step we must advance the level set functions for theM curves on the boundary of the tube, as well as

for C, which includes the fast sweeping pseudo-reinitializations and perpendicularizations. Thus the cost is
OððM þ 1ÞN gridÞ ¼ OððM þ 1ÞNr2=dx2Þ.

If an adaptive grid was used that could localize storage near the edge of the tube and at C, then this could be

reduced to O((M + 1)Nr/dx), which could result in significant savings if large r are used. In terms of storage

at this point we use a uniform grid in space, but as adaptive grids for level set methods are studied and

improved the number of points needed to be stored will approach O(Ngrid).
4. Numerical simulations

In this section, we present some numerical simulations. The PDE we evolve to steady state is (32), using

the methods mentioned above. The domain X is [�1,1]3 for all problems, discretized in a uniform rectan-

gular grid. A conservative estimate on the CFL condition for the problem is
dt max
jP j
dx

þ jP j
dy

þ jP j
dz

; kkmax

1

dx
þ 1

dy
þ 1

dz

� �
 �
6 1; ð34Þ
where kmax is the magnitude of the maximum curvature that we allow to be discretized on the grid. In prac-

tice this is set at 1/dx. We use the max applied to the P and k terms individually instead of to their sum

because we are splitting the evolution procedure.

For the individual examples we do not explicitly write the initial conditions, but rather show them in
contour plots. The way they are constructed is by determining an initial curve C0(t = 0) and finding arbi-

trary functions that have {/(t = 0) = 0} \ {w(t = 0) = 0} = C0(t = 0), and then running reinitializations and

perpendicularizations if necessary. More details about the initializations can be found in [2], or in [35] where

Clebsch variables (from hydrodynamics) that are constant along particle paths are discussed.

For some figures the energy vs. time steps plots are shown, where the energy to be maximized is defined

by (4) summed with �k|C| using (10). The d and Heaviside functions used are the compactly supported ones

given in [5], with support parameter � = 2dx. It should be noted that a more accurate numerical construc-

tion of these singular functions can be found in [11] should a more exact measure of the energy be needed.



Fig. 5. Top, left to right: Initial condition, boundary of region where P < 0, final solution. Bottom, left to right: Final solution together

with boundary of region where P < 0, and energy vs. time steps plot.

Fig. 6. Tube evolution sequence at six different timesteps.
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In Fig. 5, we show an example where SC is a tube of radius 0.2 and there is an obstacle (a sphere with a

tunnel through it) where P(x) = �1. Outside of the obstacle P(x) P 0. Here we fix the boundary of the tube

where x = {±1}. The regularization parameter k = 0.01. We use a uniform rectangular discretization with

dx = dy = dz = 2/50. The number of SC advancements is M = 5. At each time step these are chosen using

(17), where h0 is chosen randomly. In the figure it is seen that the tube locates the tunnel and avoids the
areas where P(x) < 0. Fig. 6 shows the tube evolution at six different intermediate timesteps.

In Fig. 7, we show two examples starting from identical initial conditions, but where topology preserva-

tion is enforced in one example but not in the other. Here SC is a tube of radius 0.2, and there are two balls

where P(x) > 0, a box where P(x) < 0, and P(x) = 0 elsewhere. The regularization parameter k = 0.02. We

use a uniform rectangular discretization with dx = dy = dz = 2/50. For this example we choose M = 1 for

h0 = p so that a pinchoff will be forced when topology preservation is not used.

In the figure we see that the topology is prohibited from changing when the topology preservation is

enforced. Fig. 8 shows a sequence of intermediate timesteps in the case where topology preservation
is not enforced.
Fig. 7. Left to right: Boundary of sets where P > 0 (blue spheres) and P < 0 (black box), initial condition of tube, final tube with no

topology preservation, final tube with topology preservation. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 8. Tube evolution sequence at four different timesteps when topology preservation is not enforced.
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In Fig. 9, we show an example where pseudo-reinitialization allows for cusped regions to form. Here SC

is a tube of radius 0.2, and there is a rectangle where P(x) > 0. The regularization parameter k = 0.01. We

use a uniform rectangular discretization with dx = dy = dz = 2/50. The number of SC advancements is

M = 4. At each time step these are chosen using (17), where h0 is chosen randomly.

The figure demonstrates how cusped regions are allowed to form when pseudo-reinitialization is used as
opposed to standard reinitialization. If standard reinitialization is used instead of pseudo-reinitialization,

then we do not capture the cusped region and the result is that of Fig. 10.

In Fig. 11, we show an example where the path width is spatially varying. In this example R(x) = 1 when

x 6 0, while R(x) = 2 when x > 0. Here SC is a tube of radius 0.15, and there is a sphere where P(x) = �1

centered near the origin. The regularization parameter k = 0.02. We use a uniform rectangular discretization
Fig. 9. Left to right: Initial C and boundary of rectangle where P > 0, advanced C, and advanced SC. In this example pseudo-

reinitialization is used.

Fig. 10. Left to right: Initial SC and boundary of rectangle where P > 0, and advanced SC. In this example standard reinitialization is

used instead of pseudo-reinitialization.

Fig. 11. Left to right: Boundary of set where P < 0, initial SC, and final SC. In this example R(x) is spatially varying.
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with dx = dy = dz = 2/50. The number of SC advancements is M = 5. At each time step these are chosen

using (17), where h0 is chosen randomly.
5. Conclusion

We have presented an extension of the level set based algorithm for solving a variational approach to

path planning that was originally proposed in [4]. This involved adapting the codimension-2 level set frame-

work established in [2] for motions of curves in R3. Some key features of this algorithm are the energy inte-

grals used to define the search criteria, the splitting technique used to advance the PDEs, the fast methods

for reinitialization, pseudo-reinitialization, prependicularization, and the topology preservation for curves

in R3.

The energy integrals used are very basic and encompass general properties that are desirable in many
path planning problems. However, they are not exhaustive and more complicated energies based on func-

tionals of curvature, torsion, or other path properties can be constructed.

Some other problems which we have not approached but are feasible for future research are: multiple

non-intersecting paths, time dependent parameters such as R,P,l, paths passing through multiple pre-

scribed points, and self-intersecting paths. Also, it may be possible to use the ideas from [24] to use this

3d method to construct self-intersecting paths for problems with 2d domains. Level set motion of tubes hav-

ing small positive width may also have applications in image processing, such as segmentation of filaments

or other thin objects such as blood vessels.
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